On Increasing Subsequences of Random Permutations
نویسنده
چکیده
Let Ln be the length of a longest increasing subsequence in a random permutation of {1, ..., n}. It is known that the expected value of Ln is asymptotically equal to 2 √ n as n gets large. This note derives upper bound on the probability that Ln − 2 √ n exceeds certain quantities. In particular, we prove that Ln − 2 √ n has order at most n1/6 with high probability. Our main result is an isoperimetric upper bound of the probability that Ln − 2 √ n exceed θn1/6, which suggests that the variance V [Ln] might be n 1/3. We also find an explicit lower bound of the function β(c) := − lim n→∞ 1 √ n log Pr (Ln − 2 √ n > c √ n ) , c > 0 defined by Aldous and Diaconis [1].
منابع مشابه
Increasing Subsequences in Nonuniform Random Permutations
Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing and decreasing subsequences in non-uniform random permutations.
متن کاملGl(n,q) and Increasing Subsequences in Nonuniform Random Permutations
Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing subsequence in non-uniform random permutations.
متن کامل3 1 Ja n 19 99 LONGEST INCREASING SUBSEQUENCES OF RANDOM COLORED PERMUTATIONS
Abstract. We compute the limit distribution for (centered and scaled) length of the longest increasing subsequence of random colored permutations. The limit distribution function is a power of that for usual random permutations computed recently by Baik, Deift, and Johansson (math.CO/9810105). In two–colored case our method provides a different proof of a similar result by Tracy and Widom about...
متن کاملLongest Increasing Subsequences of Random Colored Permutations
We compute the limit distribution for the (centered and scaled) length of the longest increasing subsequence of random colored permutations. The limit distribution function is a power of that for usual random permutations computed recently by Baik, Deift, and Johansson (math.CO/9810105). In the two–colored case our method provides a different proof of a similar result by Tracy and Widom about t...
متن کامل3 Longest increasing subsequences in pattern - restricted permutations
Inspired by the results of Baik, Deift and Johansson on the limiting distribution of the lengths of the longest increasing subsequences in random permutations, we find those limiting distributions for pattern-restricted permutations in which the pattern is any one of the six patterns of length 3. We show that the (132)-avoiding case is identical to the distribution of heights of ordered trees, ...
متن کاملLongest Increasing Subsequences in Pattern-Restricted Permutations
Inspired by the results of Baik, Deift and Johansson on the limiting distribution of the lengths of the longest increasing subsequences in random permutations, we find those limiting distributions for pattern-restricted permutations in which the pattern is any one of the six patterns of length 3. We show that the (132)-avoiding case is identical to the distribution of heights of ordered trees, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 76 شماره
صفحات -
تاریخ انتشار 1996